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A short stereoselective synthesis of (+)-boronolideI
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Abstract—A short and stereoselective synthesis of (+)-boronolide via oxidative functionalization of an olefin using a pendant
sulfinyl group is described. Diastereoselective allylation was performed using Keck’s protocol and the lactone moiety was prepared
by ring closing metathesis.
� 2006 Published by Elsevier Ltd.
(+)-Boronolide 1 was isolated from the bark and
branches of Tetradenia fruiticosa1 and from the leaves
of Tetradenia barbera.2 The partially deacetylated 2
and the totally deacetylated derivative 3 were isolated
from Tetradenia riparia.3 The extracts from the roots
and the leaves of these trees have been used as folk med-
icine in Madagascar and in southern Africa as an emetic
and in the treatment of malaria.4 Boronolide has an a,b-
unsaturated d-lactone moiety and a polyhydroxylated
side chain. This structural feature is characteristic of
the natural products possessing a wide range of biolog-
ical activity,5 making them attractive targets for total
syntheses. The relative stereochemistry of boronolide
was established by X-ray studies,6 and the absolute ste-
reochemistry was confirmed by chemical degradation.2
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Earlier reported syntheses of boronolide have relied on
chiral pool starting materials,7 aldol reaction8 and
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Sharpless dihydroxylation9 to construct the contiguous
oxygenated stereocentres. Our synthetic plan relied on
the oxidative functionalization of an olefin via the
participation of an intramolecular sulfinyl moiety.10

The synthesis commenced with the condensation of
(S)-methyl p-tolyl sulfoxide 4,11 and trans-ethyl hept-2-
enoate 5 following Solladie’s protocol12 to yield b-keto
sulfoxide 6 (60%, ½a�25

D �158 (c 1, CHCl3)). Diastereose-
lective reduction13 using DIBAL-H/ZnCl2 afforded allyl
alcohol 7 (>95% de, 84%, ½a�25

D �126 (c 1, CHCl3)).14 The
treatment of 7 with freshly recrystallized N-bromo-
succinimide (NBS) afforded regioisomeric bromodiols
8 and 9, resulting from 5-exo- and 6-endo-nucleophilic
attack, respectively, as an inseparable mixture in a 7:3
ratio (75%). In efforts to secure a single regioisomer,
the t-butyldimethylsilyl ether 10, obtained from 7
(94%, ½a�25

D �62 (c 1, CHCl3)), was reacted with NBS.
However, in this instance too, the reaction failed to
proceed regioselectively and an inseparable mixture of
bromohydrins 11 and 12 (72%, 3:1 ratio, respectively)
were isolated (Scheme 1).15

The inseparable mixture of 11 and 12 was converted to
an epoxide 13 (89%, ½a�25

D +119 (c 1, CHCl3)), by treat-
ment with the anhydrous potassium carbonate, proving
beyond doubt that they were regioisomers. Also depro-
tection of the silyl group in 11 and 12 afforded a product
mixture whose 1H NMR spectra matched that of the
mixture of 8 and 9, thus proving that the facial selectiv-
ity of addition across the double bond was the same for
both allyl alcohol 7 and silyl ether 10. Having been
unable to secure a single isomer in the NBS reaction,
attempts were made to separate 8 and 9 by derivatizing
them suitably. The acetonides 14 (61%, ½a�25

D +156 (c 1,
CHCl3)) and 15 (28%, ½a�25

D +167 (c 1, CHCl3)) proved
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separable.14 Nucleophilic displacement of the bromide
in 14 and 15, by an oxygen nucleophile would afford a
product with three contiguous chiral centres as present
in the target. The attempted displacement of the bro-
mide in 14 with anhydrous potassium acetate in DMF,
yielded none of the expected acetate 16, but the elimi-
nated product 17 (79%, Scheme 2).

With sodium nitrite16 as the reagent, 14 reacted cleanly
to afford alcohol 18 (68%, ½a�25

D +149 (c 1, CHCl3)). In
a similar fashion acetonide 15 afforded alcohol 19
(86%, ½a�25

D +147 (c 1, CHCl3)). Deprotection of the
acetonides followed by acetylation of the resulting triol
20 (87%, ½a�25

D +198 (c 1, CHCl3))14 furnished triacetate
21 (96% ½a�25

D +86 (c 1, CHCl3)).14 Thus bromo-
diols 8 and 9 converged to give the same triacetate 21.
Two steps (acetonide formation and deprotection) could
be saved if the mixture of 8 and 9 could be directly sub-
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jected to a reaction with a suitable oxygen nucleophile.
Attempted reaction of the mixture of bromohydrins
with sodium nitrite however afforded a mixture of prod-
ucts. Having secured the triacetate, it remained to unra-
vel the aldehyde moiety by a Pummerer reaction and
subject it to diastereoselective allylation followed by
acrylate ester formation to set the stage for ring closing
metathesis. Activation of the sulfinyl group in 21 with
TFAA17 in the presence of 2,6-lutidine followed by
hydrolysis of intermediate 22 with aqueous saturated
sodium bicarbonate furnished aldehyde 23 (65%), which
proved unstable to column chromatography and hence
used in the next step without further purification. The
aldehyde was a key intermediate in the synthetic route
of Carda et al.7d The reagent controlled asymmetric
allylation using Keck et al. protocol18 furnished a
complex mixture of products. Among various methods,
allylation using allyltributyltin/BF3ÆEt2O19 proved
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satisfactory20 and the desired product 24 and its epimer
(not depicted) was obtained as an inseparable mixture of
diastereomers (76%, 9:1 by NMR). The mixture of
alcohols was subjected to a treatment with acryloyl chlo-
ride in the presence of triethyl amine to afford 25 and its
epimer that could be separated by column chromatogra-
phy (79%, ½a�25

D +2 (c 0.5, CHCl3)). Compound 25 on
ring closing metathesis reaction using Grubbs’ second
generation catalyst afforded boronolide 1 (70%, Scheme
3). The spectroscopic data of 1 (1H NMR, 13C NMR,
IR) were in agreement with literature data.2

In summary, a short and stereoselective synthesis of (+)-
boronolide has been achieved utilizing our oxidative
functionalization strategy.
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